import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams['figure.figsize'] = (15, 8)
import numpy as np
import pandas as pd
from dsci345 import pretty
rng = np.random.default_rng()
$$\renewcommand{\P}{\mathbb{P}} \newcommand{\E}{\mathbb{E}} \newcommand{\var}{\text{var}} \newcommand{\sd}{\text{sd}} \newcommand{\cov}{\text{cov}}$$
This is here so we can use \P
and \E
and \var
and \cov
and \sd
in LaTeX below.
Covariance, and correlationΒΆ
DefinitionsΒΆ
For random variables $X$ and $Y$, $$\begin{aligned} \cov[X, Y] &= \E[(X - \E[X])(Y - \E[Y])] \\ &= \E[XY] - \E[X] \E[Y] , \end{aligned}$$ and $$ \text{cor}[X, Y] = \frac{ \cov[X, Y] }{ \sd[X] \sd[Y] } $$
Properties:
If $a$ is nonrandom and $Z$ is another random variable, then $$\begin{aligned} \text{(constants)} \qquad & \cov[a, X] = 0 \\ \text{(bilinearity)} \qquad & \cov[a X + Y, Z] = a \; \cov[X, Z] + \cov[Y, Z] . \end{aligned}$$
ExampleΒΆ
Let $Z_1$, $Z_2$, and $Z_3$ be independent Normal(0, 1), and $$\begin{aligned} X &= \frac{1}{\sqrt{2}}\left( Z_1 + Z_2 \right) \\ Y &= \frac{1}{\sqrt{2}}\left( Z_2 + Z_3 \right) . \end{aligned}$$ Then $$\begin{aligned} X &\sim \text{Normal}(0, 1) , \\ Y &\sim \text{Normal}(0, 1) , \end{aligned}$$ and $$\begin{aligned} \cov[X, Y] &= \frac{1}{2} \E[(Z_1 + Z_2)(Z_2 + Z_3)] \\ &= \frac{1}{2} . \end{aligned}$$
Z = rng.normal(size=(3, 2000))
X = ( Z[0,:] + Z[1,:] ) / np.sqrt(2)
Y = ( Z[1,:] + Z[2,:] ) / np.sqrt(2)
for k in range(10):
print(np.round(X[k]), np.round(Y[k]))
0.0 -1.0 -2.0 -2.0 1.0 -1.0 0.0 1.0 0.0 -1.0 0.0 -1.0 -2.0 -1.0 -0.0 0.0 0.0 0.0 -1.0 0.0
Plotting $X$ and $Y$ against each other, we get a roughly elliptical cloud that goes from lower-left to upper-right.
# Cov Plot 1
fig, ax = plt.subplots()
ax.scatter(X, Y); ax.set_aspect(1)
ax.set_xlabel("X"); ax.set_ylabel("Y");
np.corrcoef(X, Y)
array([[1. , 0.48667493], [0.48667493, 1. ]])
Exercise:ΒΆ
Modify the example so that $\cov[X, Y] = - 1/2$ (and so the plot tilts the other way).
Multivariate dataΒΆ
Suppose we have a bunch of data, like $$ \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1k} \\ X_{21} & X_{22} & \cdots & X_{2k}\\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & \cdots & \cdots &X_{nk} \end{bmatrix} $$ where $$\begin{aligned} X_{i \cdot} &= \text{(one observation)} \\ X_{\cdot j} &= \text{(one variable)} . \end{aligned}$$
How do we describe relationships between the variables?
The sample covariance matrix of a dataset is $$ C_{jk} = \cov[X_{\cdot j}, X_{\cdot k}] $$ (and the sample covariance is computed just like the sample variance).
ExampleΒΆ
Say we have measurements of lots of trees, for:
- age,
- height,
- number of leaves, and
- number of other trees within 5m.
Which correlations will be positive? Negative?
Here is a hopefully interesting but not terribly realistic simulation:
x = np.arange(12).reshape(3, 4)
np.mean(x, axis=1)
array([1.5, 5.5, 9.5])
def h(a):
return a/2 * np.exp(-a/50) + 50 * (1 - np.exp(-a/50))
avec = np.linspace(0, 150, 301)
hvec = h(avec)
h(50)
np.float64(40.80301397071394)
# Cov Plot 2
plt.plot(avec, hvec);
n = 2000
age = 4 + rng.exponential(scale=50, size=n) # years
height = rng.normal(loc=h(age), scale=h(age)/5, size=n) # meters
others = rng.poisson(lam=5, size=n)
leaves = rng.poisson(lam=100*age * np.exp(others*np.log(.2)/5), size=n)
X = np.column_stack([age, height, leaves, others])
np.corrcoef(X.T)
array([[ 1. , 0.70288178, 0.70554098, 0.02108243], [ 0.70288178, 1. , 0.50001272, 0.03726295], [ 0.70554098, 0.50001272, 1. , -0.47234272], [ 0.02108243, 0.03726295, -0.47234272, 1. ]])
fig, axes = plt.subplots(4, 4)
names = ['age', 'height', 'leaves', 'others']
for i in range(4):
for j in range(4):
ax = axes[i][j]
if i == j:
ax.hist(X[:,i], bins=pretty(X[:,i], 40)); ax.set_xlabel(names[i])
else:
ax.scatter(X[:,j], X[:,i]); ax.set_xlabel(names[j]); ax.set_ylabel(names[i])
plt.tight_layout()
The Multivariate Normal distributionΒΆ
However: how can we produce a particular covariance matrix? Here's one way...
First, some facts about the Normal: if $$ X_i \sim \text{Normal}(\text{mean}=\mu_i, \text{sd}=\sigma_i), \qquad 0 \le i \le k-1, $$ are independent, and $a$ and $b$ are nonrandom, then:
$X_1 + \cdots + X_k$ is Normal, with mean $\mu_1 + \cdots + \mu_k$ and SD $\sqrt{\sigma_1^2 + \cdots + \sigma_k^2}$.
$a X_i + b$ is Normal($a \mu_i + b$, $a\sigma_i$).
i.e., the sum of independent Normals is Normal (and so their means and variances sum).
So: if $Z_1, \ldots, Z_k$ are independent Normal(0,1) and $A$ is an $k \times k$ matrix, then $$ X = AZ $$ is a $k$-dimensional random variable and $$ X \sim \text{Normal}(0, A A^T) .$$
In other words, $$ \cov[ X_i, X_j ] = \cov[(AZ)_i, (AZ)_j] = \left(A A^T \right)_{ij} = \sum_\ell A_{i \ell} A_{j \ell} . $$
So, here's a recipe to simulate from the multivariate Normal: $$ X \sim \text{Normal}(\text{mean}=a, \text{cov}=C) .$$
- Let $A$ be the Cholesky factor of $C$ (so $C = A A^T$).
- Choose $Z$ to be a vector of independent Normal(0, 1).
- Let $X = a + AZ$.
Example:ΒΆ
Simulate 1,000 draws from a Normal with mean 0 and covariance matrix $$ C = \begin{bmatrix} 1 & 0.8 & -0.4 \\ 0.8 & 1 & -0.8 \\ -0.4 & -0.8 & 1 \end{bmatrix} . $$
Z = rng.normal(0, 1, size=3 * 1000).reshape((3, 1000))
C = np.array([[1, 0.8, -0.4],
[0.8, 1, -0.8],
[-0.4, -0.8, 1]])
A = np.linalg.cholesky(C)
X = np.matmul(A, Z)
np.cov(X)
array([[ 1.00182617, 0.7649947 , -0.32517247], [ 0.7649947 , 0.93058918, -0.70028825], [-0.32517247, -0.70028825, 0.8968361 ]])
# Cov Plot 3
plt.scatter(X[1,:], X[2,:])
<matplotlib.collections.PathCollection at 0x7f37d0156300>
Exercise:ΒΆ
Simulate 1,000 draws from a Normal with mean $\mu = (10, 20, 30)$ and covariance matrix $$ C = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 3 & -3 \\ -1 & -3 & 10 \end{bmatrix} . $$ What is its correlation matrix?