Correlation and covariance¶

Fall 2022: Peter Ralph

https://uodsci.github.io/dsci345

Covariance, and correlation¶

Definitions¶

For random variables $X$ and $Y$, $$\begin{aligned} \cov[X, Y] &= \E[(X - \E[X])(Y - \E[Y])] \\ &= \E[XY] - \E[X] \E[Y] , \end{aligned}$$ and $$

\text{cor}[X, Y]
=
\frac{
    \cov[X, Y]
}{
    \sd[X] \sd[Y]
} 

$$

Properties:

If $a$ is nonrandom and $Z$ is another random variable, then $$\begin{aligned} \text{(constants)} \qquad & \cov[a, X] = 0 \\ \text{(bilinearity)} \qquad & \cov[a X + Y, Z] = a \; \cov[X, Z] + \cov[Y, Z] . \end{aligned}$$

Example¶

Let $Z_1$, $Z_2$, and $Z_3$ be independent Normal(0, 1), and $$\begin{aligned} X &= \frac{1}{\sqrt{2}}\left( Z_1 + Z_2 \right) \\ Y &= \frac{1}{\sqrt{2}}\left( Z_2 + Z_3 \right) . \end{aligned}$$ Then $$\begin{aligned} X &\sim \text{Normal}(0, 1) , \\ Y &\sim \text{Normal}(0, 1) , \end{aligned}$$ and $$\begin{aligned} \cov[X, Y] &= \frac{1}{2} \E[(Z_1 + Z_2)(Z_2 + Z_3)] \\ &= \frac{1}{2} . \end{aligned}$$

In [2]:
Z = rng.normal(size=(3, 2000))
X = ( Z[0,:] + Z[1,:] ) / np.sqrt(2)
Y = ( Z[1,:] + Z[2,:] ) / np.sqrt(2)
fig, ax = plt.subplots()
ax.scatter(X, Y); ax.set_aspect(1)
ax.set_xlabel("X"); ax.set_ylabel("Y");

Exercise:¶

Modify the example so that $\cov[X, Y] = - 1/2$ (and so the plot tilts the other way).

In [3]:
Z = rng.normal(size=(3, 2000))
X = ( Z[0,:] + Z[1,:] ) / np.sqrt(2)
Y = ( Z[2,:] - Z[1,:] ) / np.sqrt(2)
fig, ax = plt.subplots()
ax.scatter(X, Y); ax.set_aspect(1)
ax.set_xlabel("X"); ax.set_ylabel("Y");
print(f"Covariance: {np.cov(X, Y)}")
Covariance: [[ 1.03834308 -0.5120863 ]
 [-0.5120863   1.03530641]]

Multivariate data¶

Suppose we have a bunch of data, like $$ \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1k} \\ X_{21} & X_{22} & \cdots & X_{2k}\\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & \cdots & \cdots &X_{nk} \end{bmatrix} $$ where $$\begin{aligned} X_{i \cdot} &= \text{(one observation)} \\ X_{\cdot j} &= \text{(one variable)} . \end{aligned}$$

How do we describe relationships between the variables?

The sample covariance matrix of a dataset is $$ C_{jk} = \cov[X_{\cdot j}, X_{\cdot k}] $$ (and the sample covariance is computed just like the sample variance).

Example¶

Say we have measurements of lots of trees, for:

  1. age,
  2. height,
  3. number of leaves, and
  4. number of other trees within 5m.

Which correlations will be positive? Negative?

Here is a hopefully interesting but not terribly realistic simulation:

In [4]:
n = 2000
age = rng.exponential(scale=100, size=n)
height = rng.gamma(scale=np.sqrt(age), shape=np.sqrt(age), size=n)
leaves = np.round(rng.normal(loc=height*1000, scale=height*400, size=n))
others = rng.poisson(25 * np.pi / 4 * np.exp(-height/100))
X = np.column_stack([age, height, leaves, others])
np.corrcoef(X.T)
Out[4]:
array([[ 1.        ,  0.93766606,  0.80667024, -0.73721968],
       [ 0.93766606,  1.        ,  0.8734101 , -0.74948589],
       [ 0.80667024,  0.8734101 ,  1.        , -0.64564577],
       [-0.73721968, -0.74948589, -0.64564577,  1.        ]])
In [5]:
fig, axes = plt.subplots(4, 4)
names = ['age', 'height', 'leaves', 'others']
for i in range(4):
    for j in range(4):
        ax = axes[i][j]
        if i == j:
            ax.hist(X[:,i], bins=pretty(X[:,i], 40)); ax.set_xlabel(names[i])
        else:
            ax.scatter(X[:,j], X[:,i]); ax.set_xlabel(names[j]); ax.set_ylabel(names[i])
            
plt.tight_layout()

Exercise: Come up with at least three variables that are correlated, including at least one negative correlation, and check your neighbor agrees.

The Multivariate Normal distribution¶

However: how can we produce a particular covariance matrix? Here's one way...

First, recall some facts about the Normal: if $$ X_i \sim \text{Normal}(\text{mean}=\mu_i, \text{sd}=\sigma_i), \qquad 0 \le i \le k-1, $$ are independent, and $a$ and $b$ are nonrandom, then:

  1. $X_1 + \cdots + X_k$ is Normal, with mean $\mu_1 + \cdots + \mu_k$ and SD $\sqrt{\sigma_1^2 + \cdots + \sigma_k^2}$.

  2. $a X_i + b$ is Normal($a \mu_i + b$, $a\sigma_i$).

So: if $Z_1, \ldots, Z_k$ are independent Normal(0,1) and $A$ is an $k \times k$ matrix, then $$ X = AZ $$ is a $k$-dimensional random variable and $$ X \sim \text{Normal}(0, A A^T) .$$

In other words, $$ \cov[ X_i, X_j ] = \cov[(AZ)_i, (AZ)_j] = \left(A A^T \right)_{ij} = \sum_\ell A_{i \ell} A_{j \ell} . $$

So, here's a recipe to simulate from the multivariate Normal: $$ X \sim \text{Normal}(\text{mean}=a, \text{cov}=C) .$$

  1. Let $A$ be the Cholesky factor of $C$ (so $C = A A^T$).
  2. Choose $Z$ to be a vector of independent Normal(0, 1).
  3. Let $X = a + AZ$.

Example:¶

Simulate 1,000 draws from a Normal with mean 0 and covariance matrix $$ C = \begin{bmatrix} 1 & 0.8 & -0.4 \\ 0.8 & 1 & -0.8 \\ -0.4 & -0.8 & 1 \end{bmatrix} . $$

In [6]:
C = [[1, .8, -.4], [.8, 1, -.8], [-.4, -.8, 1]]
A = np.linalg.cholesky(C)
Z = rng.normal(size=(1000, 3))
X = Z.dot(A.T)
fig, axes = plt.subplots(1,3)
for (i,j), ax in zip([(0, 1), (0, 2), (1, 2)], axes):
    ax.scatter(X[:,i], X[:,j])
    ax.set_xlabel(i); ax.set_ylabel(j)
In [7]:
np.cov(X.T)
Out[7]:
array([[ 0.97467511,  0.77923922, -0.39828824],
       [ 0.77923922,  0.99191073, -0.80625511],
       [-0.39828824, -0.80625511,  1.01761391]])

Exercise:¶

Simulate 1,000 draws from a Normal with mean $\mu = (10, 20, 30)$ and covariance matrix $$ C = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 3 & -3 \\ -1 & -3 & 10 \end{bmatrix} . $$ What is its correlation matrix?

In [8]:
C = [[1, -1, -1], [-1, 3, -3], [-1, -3, 10]]
A = np.linalg.cholesky(C)
X = rng.normal(size=(1000, 3)).dot(A.T) + np.array([10, 20, 30])
fig, axes = plt.subplots(1,3)
for (i,j), ax in zip([(0, 1), (0, 2), (1, 2)], axes):
    ax.scatter(X[:,i], X[:,j])
    ax.set_xlabel(i); ax.set_ylabel(j)
In [9]:
np.cov(X.T)
Out[9]:
array([[ 1.0502733 , -1.10324987, -0.99719679],
       [-1.10324987,  3.17132212, -2.93232584],
       [-0.99719679, -2.93232584,  9.83556831]])